Quantification of 3D Cardiac Motion in Mice Using Multi-Phase DENSE MRI
نویسندگان
چکیده
MRI provides a valuable tool for noninvasive evaluation of myocardial wall motion. Recently, multi-phase 2D DENSE MRI was developed to quantify cardiac strain in mice at high spatial and temporal resolution [1, 2]. DENSE methods for 3D displacement encoding have also been investigated [3]. Typically, these methods entail multiple acquisitions that are time consuming. In this project, we aimed to achieve quantification of 3D myocardial wall motion in mice using 5 scans. The proposed method was validated by traditional 2D DENSE techniques.
منابع مشابه
Automated cardiac motion estimation from 3D Cine DENSE MRI
Background 3D cine displacement encoding with stimulated echoes (DENSE) directly encodes tissue displacement into MR phase data, providing a comprehensive 3D view of cardiac motion and strain. Unfortunately, 3D cine DENSE motion analysis presently requires manually delineated anatomy. An automated analysis would reduce interobserver variability, improve measurement throughput, and simplify data...
متن کاملCardiac Motion Estimation Using Covariant Derivatives and Helmholtz Decomposition
Quantification of cardiac function is important for the assessment of abnormalities and response to therapy. We present a method to reconstruct dense cardiac motion from sparse features in tagging MRI, decomposed into solenoidal and irrotational parts using multi-scale Helmholtz decomposition. Reconstruction is based on energy minimization using covariant derivatives exploiting prior knowledge ...
متن کاملMotion corrected LV quantification based on 3D modelling for improved functional assessment in cardiac MRI.
Cine MRI is a clinical reference standard for the quantitative assessment of cardiac function, but reproducibility is confounded by motion artefacts. We explore the feasibility of a motion corrected 3D left ventricle (LV) quantification method, incorporating multislice image registration into the 3D model reconstruction, to improve reproducibility of 3D LV functional quantification. Multi-breat...
متن کاملCharacterization of Respiratory and Cardiac Motion from Electro-Anatomical Mapping Data for Improved Fusion of MRI to Left Ventricular Electrograms
Accurate fusion of late gadolinium enhancement magnetic resonance imaging (MRI) and electro-anatomical voltage mapping (EAM) is required to evaluate the potential of MRI to identify the substrate of ventricular tachycardia. However, both datasets are not acquired at the same cardiac phase and EAM data is corrupted with respiratory motion limiting the accuracy of current rigid fusion techniques....
متن کاملQuantifying right ventricular motion and strain using 3D cine DENSE MRI
Background The RV is difficult to image because of its thin wall, asymmetric geometry and complex motion. DENSE is a quantitative MRI technique for measuring myocardial displacement and strain at high spatial and temporal resolutions [1,2]. DENSE encodes tissue displacement directly into the image phase, allowing for the direct extraction of motion data at a pixel resolution. A free-breathing n...
متن کامل